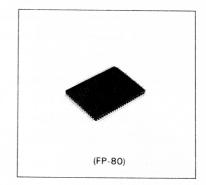


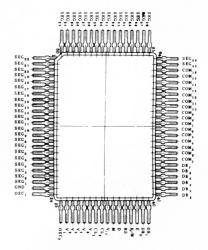
#AP4

HD44780 (LCD-II) (DOT MATRIX LIQUID CRYSTAL DISPLAY CONTROLLER & DRIVER)

The LCD-II (HD44780) is a dot matrix liquid crystal display controller & driver LSI that displays alphanumerics, kana characters and symbols. It drives dot matrix liquid crystal display under 4-bit or 8-bit microcomputer or microprocessor control. All the functions required for dot matrix liquid crystal display drive are internally provided on one chip. The user can complete dot matrix liquid crystal display systems with less number of chips by using the LCD-II (HD44780). If a driver LSI HD44100H is externally connected to the HD44780, up to 80 characters can be displayed.


The LCD-II is produced in the CMOS process. Therefore, the combination of the LCD-II with a CMOS microcomputer or microprocessor can accomplish a portable battery-drive device with lower power dissipation.

FEATURES


- 5 × 7 and 5 × 10 dot matrix liquid crystal display controller driver
- Capable of interfacing to 4-bit or 8-bit MPU.
- Display data RAM ... 80×8 bits

(80 characters, max.)

Character generator ROM ...
 Character font 5 × 7 dots: 160 characters
 Character font 5 × 10 dobts: 32 characters

PIN ARRANGEMENT

(Top View)

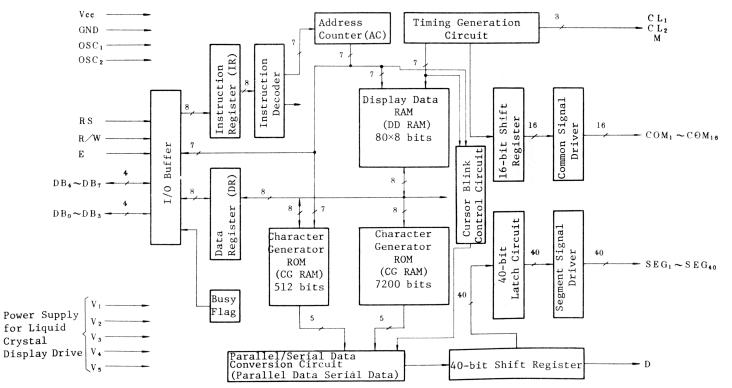
HD44780-

- Both display data and character generator RAMs can be read from the MPU.
- Internal liquid crystal display driver

16 common signal drivers

- 14 segment signal drivers (Can be externally extended to 360 segments by liquid crystal display driver HD44100H)
- Duty factor selection (selected by program)
 - 1/8 duty: 1 line of 5 \times 7 dots + cursor
 - 1/11 duty: 1 line of 5 \times 10 dots + cursor
 - 1/16 duty: 2 lines of 5 \times 7 dots + cursor

Maximum number of display characters


No. of display lines	Duty factory	Extension	HD44780	HD44100H	No. of display characters
1-line	1/8 1/11	Not provided	'l pc.		8 characters ×1 line
display	duty	provided 1 pc. 9 pcs. (8 characters/pc.)		80 characters ×1 line	
2-line	1/16	Not provided	1 pc.		8 characters ×2 lines
display	duty	provided	1 pc.	4 pcs.(8 characters ×2 lines/pc)	40 characters $\times 2$ lines

Wide range of instruction functions
 Display clear, Cursor home, Display ON/OFF, Cursor ON/OFF,
 Display character blink, Cursor shift, Display shift

- Internal automatic reset circuit at power ON. (Internal reset circuit)
- Internal oscillation circuit (with external resistor or ceramic filter) (External clock operation possible)
- CMOS process
- Logic power supply: A single + 5V (excluding power for liquid crystal display drive)
- Operation temperature range: $-20 \sim +75^{\circ}C$

(Device for $-40 \sim +85^{\circ}C$ available upon request)

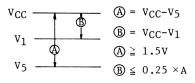
• 80-pin plastic flat package (FP-80)

- HD44780

■ ELECTRICAL CHARACTERISTICS

• Absolute Maximum Ratings

Item	Symbol	Unit	Note	
Power Supply Voltage (1)	v _{cc}	-0.3 to +7.0	v	
Power Supply Voltage (2)	V1 to V5	V_{CC} -13.5 to V_{CC} +0.3	v	3
Input Voltage	v _T	-0.3 to V _{CC} +0.3	v	
Operating Temperature	Topr	-20 to +75	°C	
Storage Temperature	Tstg	-55 to +125	°C	

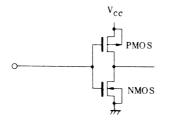

Note 1: If LSI's are used above absolute maximum ratings, they may be permanently destroyed. Using them within electrical characteristic limits is strongly recommended for normal operation. Use beyond these conditions will cause malfunction and poor reliability.

Note 2: All voltage values are referenced to GND=OV.

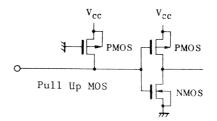
Note 3: Applies to V1 to V5. Must maintain $V_{CC} \ge V1 \ge V2 \ge V3 \ge V4 \ge V5$

(high $\leftarrow \rightarrow low$)

• Electrical Characteristics ($V_{CC} = 5V \pm 10\%$, Ta = -20 to +75°C)

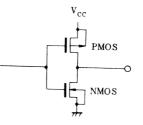


The conditions of V_1 , V_5 voltages are for proper operation of the LSI and not for the LCD output level. The LCD drive voltage condition for the LCD output level is specified in "LCD voltage V_{LCD} ".

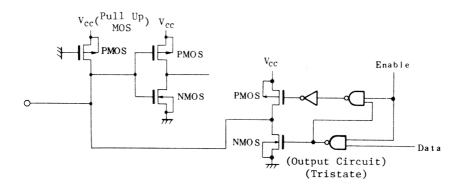

	1	Test	T	imit			
Item	Symbol	condition	min	typ	max	Unit	Note
Input "High" Voltage (1)	V _{IH1}		2.2	-	V _{CC}	v	(2)
Input "Low" Voltage (1)	V _{IL1}		-0.3	-	0.6	v	(2)
Output "High" Voltage (1)(TTL)	V _{OH1}	-I _{OH} =0.205mA	2.4	-	-	v	(3)
Output "Low" Voltage (1) (TTL)	VOLI	I _{OL} =1.2mA	-	-	0.4	v	(3)
Output "High" Voltage (2)(CMOS)	V _{OH2}	-I _{OH} =0.04mA	0.'9V _{CC}	-	-	v	(4)
Output "Low" Voltage (2) (CMOS)	V _{OL2}	L _{OL} =0.04mA	-	-	0.1V _C	ç v	(4)
Driver Voltage Descending (COM)	VCOM	Id=0.05mA	-	-	2.9	v	(10)
Driver Voltage Descending (SEG)	VSEG	Id=0.05mA	-	-	3.8	v	(10)
Input Leakage Current	IIL	Vin=0 to V _{CC}	-1	-	1	μA	(5)
Pull up MOS Current	-Ip	V _{CC} =5V	50	125	250	μA	
Power Supply Current (1)	ICC1	Ceramic filter oscillation V _{CC} =5V, f _{OSC} = 250kHz	-	0.55	0.8	mA	(6)
Power Supply Current (2)	ICC2	Rf oscillation External clock operation V _{CC} =5V, f _{osc} = fcp=270kHz	-	0.35	0.6	mA	(6) (11)
External Clock Operation	L	L			1		1
External Clock Frequency	f _{cp}		125	250	350	kHz	(7)
External Clock Duty	Duty		45	50	55	%	(7)
External Clock Rise Time	trcp		-	-	0.2	us	(7)
External Clock Fall Time	tfcp		-	-	0.2	μs	(7)
Input "High" Voltage (2)	V _{IH2}		V _{CC} -1.0	-	Vcc	v	(12)
Input "Low" Voltage (2)	V _{IL2}		-0.3	-	1.0	v	(12)
Internal Clock Operation (Rf osc	illation)			•		
Clock Oscillation Frequency	f _{osc}	$Rf = 91k\Omega \pm 2\%$	190	270	350	kHz	(8)
Internal Clock Operation (Cerami	c filter	oscillation)			-		
Clock Oscillation Frequency	fosc	Ceramic filter	245	250	255	kHz	(9)
LCD Voltage	V _{LCD1}	Vcc-V5 1/5 bias	4.6	-	11	v	(13)
	V _{LCD2}	1/4 bias	3.0	-	11	v	(13)

HITACHI 83

- Note 1: The following are I/O terminal configurations except for liquid crystal display output.
- Input Terminal Applicable Terminals: E (No pull up MOS)

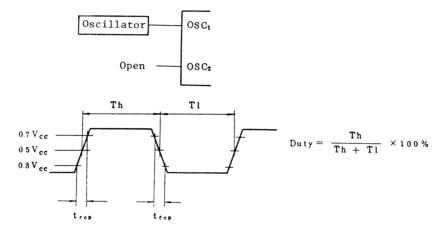


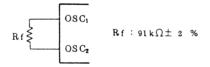
Applicable Terminals: RS, R/W (With pull up MOS)


• Output Terminal

Applicable Terminals: CL1, CL2, M, D

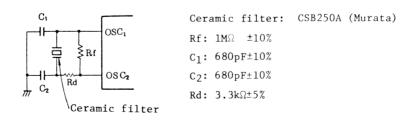
• I/O Terminal


Applicable Terminals: DBO to DB7

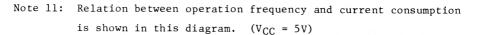

Note 2: Input terminals and I/O terminals. Excludes OSC_1 terminals. Note 3: I/O terminals.

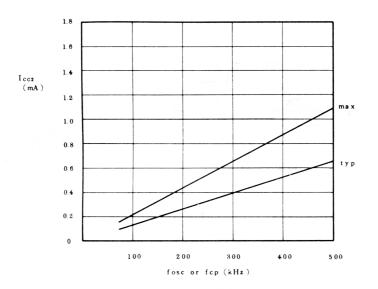
Note 4: Output terminals.

- Note 5: Current flowing through pull-up MOS's and output drive MOS's is excluded.
- Note 6: Input/Output current is excluded. When input is at the intermediate level with CMOS, excessive current flows through the input circuit to the power supply. To avoid this, input level must be fixed at high or low.
- Note 7: External clock operation.



Since oscillation frequency varies depending on OSC_1 and OSC_2 terminal capacity, wiring length for these terminals should be minimized.

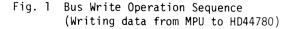

Note 9: Internal oscillator operation using a ceramic filter.is used.



HD44780-

Note 10: Applies to both $\mathtt{V}_{\texttt{COM}}$ and $\mathtt{V}_{\texttt{SEG}}$ voltage drops.

- $V_{\rm COM}$: From poer supply terminal $V_{\rm CC},~V_1,~V_4,~V_5$ to each common signal terminal (COM1 to COM16)
- V_{SEG} : From power supply terminal V_{CC} , V_2 , V_3 , V_5 to each segment signal terminal (SEG₁ to SEG₄₀)


Note 12: Applied to OSC1 terminal.

Note 13: The condition for COM pin voltage drop (V_{COM}) and SEG pin voltage drop (V_{\rm SEG}).

• Timing Characteristics

Write Operation

Read Operation

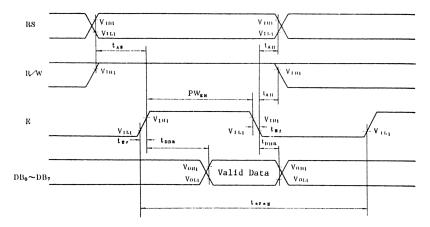


Fig. 2 Bus Read Operation Sequence (Reading out data from HD44780 to MPU)

HD44780-

Interface Signal with Driver LSI HD44100H

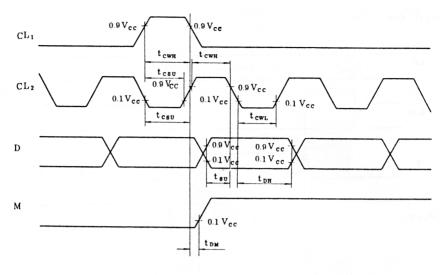


Fig. 3 Sending Data to Driver LSI HD44100H

• Bus Timing Characteristics (V_{CC} = $5.0V \pm 10\%$, GND = 0V, Ta = -20 to $+75^{\circ}$ C)

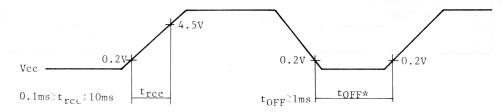
Item		Symbol	Test condition	Lim	it	Unit
		5 ymbor		min	max	onre
Enable Cycle Time		t _{cyc} E	Fig. 1	1000	-	ns
Enable Pulse Width	"High" level	$PW_{\rm EH}$	Fig. 1	450	-	ns
Enable Rise/Fall Time	2	t _{Er} , t _{Ef}	Fig. 1	-	25	ns
Address Set-up Time	RS, R/W —E	t _{AS}	Fig. 1	140	-	ns
Address Hold Time		t _{AH}	Fig. 1	10	-	ns
Data Set-up Time		^t DSW	Fig. 1	195	-	ns
Data Hold Time		t _H	Fig. 1	10	-	ns

Write Operation (Writing data from MPU to HD44780)

Read Operation (Reading data from HD44780 to MPU)

Item		Symbol	Test condition	Lim	it	Unit
		5ym001	Test condition	min	max	UNIL
Enable Cycle Time		t _{cycE}	Fig. 2	1000	-	ns
Enable Pulse Width	"High" level	PW _{EH}	Fig. 2	450	_	ns
Enable Rise/Fall Time		t _{Er} , T _{Ef}	Fig. 2	-	25	ns
Address Set-up Time	RS, R/W —-E	t _{AS}	Fig. 2	140	-	ns
Address Hold Time		t _{AH}	Fig. 2	10	-	ns
Data Delay Time		t _{DDR}	Fig. 2	-	320	ns
Data Hold Time		t _{DHR}	Fig. 2	20	-	ns

• Interface Signal with HD44100H Timing Characteristics ($V_{CC} = 5.0V \pm 10\%$, GND = 0V, Ta = -20 to +75°C)


Item		Symbol	Test condition	Lim	it	Unit	
Item		Symbol	Test condition	min	max		
Clock Pulse Width	"High" level	t _{CWH}	Fig. 3	800	_	ns	
Clock Pulse Width	"High" level	t _{CWL}	Fig. 3	800	-	ns	
Clock Set-up Time		t _{CSU}	Fig. 3	500	_	ns	
Data Set-up Time		t _{SU}	Fig. 3	300	-	ns	
Data Hold Time		t _{DH}	Fig. 3	300		ns	
M Delay Time		t _{DM}	Fig. 3	-1000	1000	ns	

• Power Supply Conditions Using Internal Reset Circuit

Item	Symbol	Test condition	Lim min	Unit	
Power Supply Rise Time	trcc	· · · · · · · · · · · · · · · · · · ·	0.1	10	ns
Power Supply OFF Time	t _{OFF}		1	-	ns

Since the internal reset circuit will not operate normally unless the preceding conditions are met, initialize by instruction.

(Refer to "Initializing by Instruction")

(Note) t_{OFF} stipulates the time of power OFF for power supply instantaneous dip or when power supply repeats ON and OFF.

Terminal Function

Table 1 Functional Description of Terminals	Table l	Functional	Description	of	Terminals
---	---------	------------	-------------	----	-----------

Signal name	No. of lines	Input/ Output	Connected to	Function
RS	1	Input	MPU	Signal to select registers "O": Instruction register (for write) Busy flag; address counter (for read) "1": Data register (for read and write)
R/W	1	Input	MPU	Signal to select read (R) and write (W "O": Write "1": Read
E	1	Input	MPU	Operation start signal for data read/ write
DB4 ~ DB7	4	Input/ Output	MPU	Higher order 4 lines data bus with bidirectional three-state. Used for data transfer between the MPU and the HD44780. DB7 can be used as a BUSY flag.
DBO ~ DB3	4	Input/ Output	MPU	Lower order 4 lines data bus with bidirectional three-state. Used for data transfer between the MPU and the HD44780. These four are not used during 4-bit operation.
CL1	1	Output	HD44100H	Clock to latch serial data D sent to the driver LSI HD44100H.
CL ₂	1	Output	HD44100H	Clock to shift serial data D.
М	1	Output	HD44100H	Switch signal to convert liquid crys- tal drive waveform to AC.
D	1	Output	HD44100H	Character pattern data corresponding to each common signal is serially sent. "O": Non selection "1": Selection
сом ₁ ~ сом ₁₆	16	Output	Liquid crystal display	Common signals that are not used are charged to non-selection waveforms. That is, $COM_6 \sim COM_{16}$ are in non-selection waveform at 1/8 duty factor, and $COM_{12} \sim COM_{16}$ are in non-selection waveform at 1/11 duty factor.
seg ₁ ~ seg ₄₀	40	Output	Liquid crystal display	Segment signal
v ₁ ~ v ₅	5		Power supply	Power supply for liquid crystal display drive
V _{CC} , GND	2		Power supply	V _{CC} ; +5V, GND; OV
osc ₁ , osc ₂	2			Terminals connected to resister or ceramic filter for internal clock osillation. For external clock operation, the clock is input to OSC ₁ .

FUNCTION OF EACH BLOCK

(1) Register

The HD44780 has two 8-bit registers, an instruction register (IR) and a data register (DR).

The IR stores instruction codes such as display clear and cursor shift, and address information for display data RAM (DD RAM) and character generator RAM (CG RAM). The IR can be written from the MPU but not read by the MPU.

The DR temporarily stores data to be written into the DD RAM or the CG RAM and data to be read out from DD RAM or CG RAM. Data written into the DR from the MRU is automatically written into the DD RAM or the CG RAM by internal operation. The DR is also used for data storage when reading data from the DD RAM or the CG RAM. When address information is written into the IR, data is read into the DR from the DD RAM or the CG RAM by internal operation. Data transfer to the MPU is then completed by the MPU reading DR. After the MPU reads the DR, data in the DD RAM or CG RAM at the next address is sent to the DR for the next read from the MPU. Register selector (RS) signals make their selection from these two registers.

Table 2 Register Selection

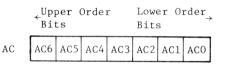
RS	R/W	Operation
0	0	IR write as internal operation (Display clear, etc.)
0	1	Read busy flag (DB7) and address counter (DB0 $^{\sim}$ DB6)
1	0	DR write as internal operation (DR to DD or CG RAM)
1	1	DR read as internal operation (DD or CG RAM to DR)

(2) Busy flag (BF)

When the busy flag is "1", the HD44780 is in the internal operation mode, and the next instruction will not be accepted. As Table 2 shows, the busy flag is output to DB_7 when RS=0 and R/W=1. The next instruction must be written after ensuring that the busy flag is "0".

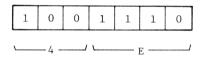
(3) Address counter (AC)

The address counter (AC) assigns addresses to DD and CG RAMs. When an instruction for address is written in IR, the address information is sent from IR to AC. Selection of either DD or CG RAM is also determined concurrently by the instruction.

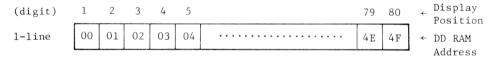

-HD44780

After writing into (or reading from) DD or CG RAM display data, AC is automatically incremented by +1 (or decremented by -1). AC contents are output to $DB_0 \sim DB_6$ when RS=0 and R/W=1, as shown in Table 2.

(4) Display data RAM (DD RAM)


The display data RAM (DD RAM) stores display data represented in 8-bit character codes. Its capacity is 80×8 bits, or 80 characters. The display data RAM (DD RAM) that is not used for display can be used as a general data RAM. Relations between DD RAM addresses and positions on the liquid crystal display are shown below.

The DD RAM address $(A_{\rm DD})$ is set in the Address Counter (AC) and is represented in hexadecimal.



└──Hexadecimal ┙└─ Hexadecimal ┙

(Example) DD RAM address "4E"

1-line Display (N=0)

(a) When the display characters are less than 80, the display begins at the head position. For example, 8 characters using 1 HD44780 are displayed as:

(digit)	1	2	3	4	5	6	7	8	← Display Position
1-line	00	01	02	03	04	05	06	07	← DD RAM Address

When the display shift operation is performed, the DD RAM address moves as:

(Left Shift Display)	01	02	03	04	05	06	07	08]						
(Right Shift Display)	4F	00	01	02	03	04	05	06]						
(b)	16-ch below		icter	dis	play	usi	ing	an H	ID44	780	and	an	HD44	100н	is as shown
(digit)	1 2	. 3	4	5	67	8	9	10 1	.1 1	2 1	3 14	15	16		visplay osition
1-line	00 01	1 02	03	04 0	05 06	07	08	09 0	A)в ()	C OD	0E	OF		D RAM
L	I	HD44	780	Disp	olay-			HD4	410	ОН :	Disp	1 1ay-		А	ddress
	When moves			play	shi	lft d	oper	atio	on i	s p	erfo	rmed	, th	e DD	RAM address
(Left Shift Display	01 02	2 03	3 04	05 (06 07	08	09	OA C	ов С	0C 01	D OE	OF	10		
(Right Shift Display)	4F 0	0 01	02	03 (04 05	06	07	08 0	9 (DA 0	вОС	OD	0e		
	numbe	er c 780	of di	spla	ay di	gits	s is	inc	rea	ased	thr	ough	the	use	ess when the of one an extension
	Since	e th	ne ir	ncrea	ase o	an b	be 8	dig	gits	fo	r ea	ch a	ddit	iona	1 HD44100H,
	up to HD441			gits	can	be d	disp	laye	ed b	oy e:	xter	nall	у со	nnec	ting 9
(digit) ¹	234	i 5	67	89	10 11	12 13	14 15	16 17	18	19 20		73	74 75	76 77	78 79 80 Display
l-line 00	01 02 0	B 0 4	05 06	07 08	09 QA	0 B 0C	OD OE	0F 10	11	12 13		- 48	49 4A	4B 4C	4D 4E 4F ← DD RAM Address
	_HD4 Dia				HD4 D	4100 ispl				4410 (2) ispl	∿(8)		HD44 Di	100H spla	I(9)
2-line Dis	play	(N=	=1)												
(digit)	1	2	3	4	5								39	40	← Display Position
1-line	00	01	02	03	04	•••	• • • •	• • • •	•••	•••		•••	26	27	← DD RAM
2-line	40	41	42	43	44	•••	••••				• • • •		66	67	Address

94 HITACHI

(a) When the number of display characters is less than 40×2 lines, the 2 lines from the head are displayed. Note that the first line end address and the second line start address are not consecutive. For example, when an HD44780 is used, 8 characters \times 2 lines are displayed as:

2-line

)	1	2	3	4	5	6	7	8	← Display Position
	00	01	02	03	04	05	06	07	← DD RAM
	40	41	42	43	44	45	46	47	Address

When display shift is performed, the DD RAM address moves as:

(Left Shift Display

	01	02	03	04	05	06	07	08
)	41	42	43	44	45	46	47	48

(Right Shift	27	00	01	02	03	04	05	06
Display)	67	40	41	42	43	44	45	46

(b) 16 characters \times 2 lines are displayed when an HD44780 and an HD44100H are used.

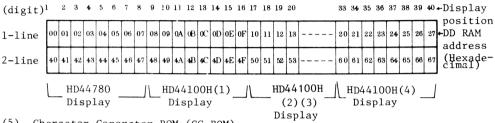
(digit)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
																OF
2-line	40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F

∠ Display Position

← DD RAM Address

----- HD44780 Display ---- HD44100H Display -----

When display shift is performed, the DD RAM address moves as follows:


(Left Shift	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	OF	10
Display)	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4 E	4F	50

(Right Shift	27	00	01	02	03	04	05	06	07	08	09	0A	OB	0C	0D	0e
Display)	67	40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E

HD44780 -

(c) The relation between display position and DD RAM address when the number of display digits is increased by using one HD44780 and two or more HD44100H's, can be considered an extension of (b).

Since the increase can be 8 digits \times 2 lines for each additional HD44100H, up to 40 digits 2 lines can be displayed by connecting 4 HD44780's externally.

(5) Character Generator ROM (CG ROM)

The character generator ROM generates 5×7 dot or 5×10 dot character patterns from 8-bit character codes. It can generate 160 types of $5 \times$ 7 dot character patterns and 32 types of 5×10 dot character patterns. Table 3 and 4 show the relation between character codes and character patterns in the Hitachi standard HD44780A00. User defined character patterns are also available by mask-programming ROM. For details, see "The LCD-II (HD44780) Breadboard User's Manual".

(6) Character Generator RAM (CG RAM)

The character generator RAM is the RAM with which the user can rewrite character patterns by program. With 5×7 dots, 8 byptes of character patterns can be written and with 5×10 dots 4 types can be written. Write the character codes in the left columns of Tables 3 and 4 to display character patterns stored in CG RAM.

Table 5 shows the relation between CG RAM addresses and data and display patterns.

As Table 5 shows, an area that is not used for display can be used as a general data RAM.

Table 3 Correspondence between Character Codes and Character Pattern (Hitachi Standard HD44780A00)

Higher		[-	1	T	[T					
Lower 4bit 4bit	0000	0010	0011	0100	0101	0110	0111	1010	1011	1100	1101	1110	1111
××××0000	CG RAM (1)					•					893 892 898 898 8	Ċ	
××××0001	(2)		8 8 8 8 8 8 8 9 8 9 9			882 8928 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	203 5 0 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1		N 25 0 2000 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		
××××0010	(3)		•*** ••••				ļ.".	8	8 8 8 8 8 8 8 8			928 5149 8299 8299 8299 8299 8299 8299 8299 82	5000 5000 500
xxxx0011	(4)				:	I <u>.</u> .	 		, ¹	N N N 2 4 9 6 5 2 8 8 8			::::
××××0100	(5)		÷.				1.	•.,		.			
××××0101	(6)	" 	·			5000 5000 800	!!	::		! 		8968 5 5 8 8 8 8 8 8 8	* * *
××××0110	(7)						Ļ			995 99959	0 8 6 8 5 5 9 5 9 6 5 9 5 9 6 5 9 5 9 6 5 9 5 9 5 5 9 5 9 5 5 9 5 9 5 5 9 5 9 5	8 ⁹⁸ 8 8 ⁹⁸ 8 8 ⁹⁸ 8 8 ⁹⁸ 8 8 ⁹⁸ 8 8	
××××0111	(8)	88	****** *****				.						
××××1000	(1)	I.				8853983					! .! 	908 808 908 908	.×.
××××1001	(2)	ļ	· · · · · · · · · · · · · · · · · · ·			5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	;-1-; 			.	1	
××××1010	(3)	:+:	11			8 8 8 8 8	80228 9 9 9 9 9 9 9 9 9				.		
××××1011	(4)	80002 8	11 *1		2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3					2 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		• ! :::	89499 9829 8 ⁹ 829
××××1100	(5)	;1			8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8				85 82 8 98 8 98 8	88998 89 89		1.	50195 500-5
××××1101	(6)		82998 98889	! :			1	880 99803	88000 9 ⁰ 8 ⁸ 8 8 ⁸ 8	·`•,	•¤, 509 ⁹		
××××1110	(7)	81			••••		•••• ••• •	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		••••••	•••	885 5,** 5	
××××1111	(8)	•••					80908 80908 80		·!		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		

* The user can specify any pattern for character-generator ROM.

HD44780-

Table 4 Relation between CG RAM Addresses and Character Codes (DD RAM) and Character Patterns (CG RAM Data)

	r	01	5	~ /	u	01	CI	arac	te	r	pa	LLE	ern	IS								
	Ch	ara	cte	er	Cod	es	1.5				CG	RAI	1		Ch	arac	ter	Pa	tt	ern	s	
L	()	DD	RAN	1 D.	ata)				A	dd	res	s			(CG	RAM	Da	ita	ι)		
7	6 Hig Ord Bit	5 her er s	•	8		l Low Ord Bit	0 er er→		5	4 High Drd Bit	8 her er s	2 L 0 B	l owe rde its		7 Hi • Or Bi	65 gher der ts	4	8	2	l Lowe Orde Bits	0 er	
0	0	0	0	*	0	0	0		0	0	0	0 0 0 1 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1		* *		1 0 0 1 0 0 0 0	1 0 1 1 0 0 0	0 1 0 1 0	0 1 1 0 0 0 1 0	Character Pattern Example (1) Cursor ← Position
0	0	0	0	*	0	0	1		0	0	1	0	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1	*	* *		0 1 1 0 1 0 0 0	0 1 1 1 1 1 1 0	1 0 1 0 0	1 0 1 0 0 0 0	Character Pattern Example (2)
	0	0	0	*	1	1	1		1	1	1		0 0 0 1 1	0 1 0 1 0 1		* • (/ *						*No effect

(a) For 5×7 dot character patterns

- (Note) 1: Character code bits 0 ~ 2 correspond to CG RAM address bits 3 ~ 5 (3 bits: 8 types).
 - 2: CG RAM address bits $0 \sim 2$ designate character pattern line position. The 8th line is the cursor position and display is performed in logical OR by the cursor.

Maintain the 8th line data, corresponding to the cursor display position, in the "O" state for cursor display. When the 8th line data is "1", bit 1 lights up regardless of cursor existence.

- 3: Character pattern row positions correspond to CG RAM data bits $0 \sim 4$, as shown in the figure (bit 4 being at the left end). Since CG RAM data bits $5 \sim 7$ are not used for display, they can be used for the general data RAM.
- 4: As shown in Table 3 and 4, CG RAM character patterns are selected when character code bits 4 ~ 7 are all "0". However, since character code bit 3 is a ineffective bit, the "R" display in the character pattern example, is selected by character code "00" (hexadecimal) or "08" (hexadecimal).
- 5: "1" for CG RAM data corresponds to selection for display and "0" for non-selection.

(b) For 5×10 dot character patterns

Character Codes	CG RAM	Character Patterns	
(DD RAM Data)	Address	(CG RAM Data)	
7 6 5 4 8 2 1 0 Higher Lower Order Order Bits Bits	5 4 8 2 1 0 Higher Lower Order Order ➡Bits Bits →	7 6 5 4 8 2 1 0 Higher Lower Order Order→ Bits Bits→	
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	* * * 0 0 0 0 0	
		$ \begin{array}{ccccccccccccccccccccccccccccccccc$	Character
0 0 0 0 * 0 0 *		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pattern Example
			F = 1
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	1 0 0 1	1 0 0 0 0	Cursor
		* * * 0 0 0 0 0	← Position
		* * * * * * * *	
	1 1 1 1	* * * * * * * *	
	0 0 0 0	* * *!	
	0 0 0 1		
0 0 0 0 * 1 1 *			
	1 0 1 0	* * *	
	1 0 1 1	* * * * * * * *	
	1 1 0 0		
			*No Effect
		* * * * * * * *	"NO EITECT

- - 2: CG RAM address bits 0 ~ 3 designate character pattern line position. The llth line is the cursor position and display is performed in logical OR with cursor.

Maintain the llth line data corresponding to the cursor display position in the "O" state for cursor display. When the llth line data is "l", bit 1 lights up regardless of cursor existence. Since the l2th ~ 16th lines are not used for display, they can be used for the general data RAM.

- 3: Character pattern row positions are the same as 5 \times 7 dot character pattern positions.
- 4: CG RAM character patterns are selected when character code bits 4 7 are all "0". However, since character code bit 0 and 3 are ineffective bits, "P" display in the character pattern example is selected by character code "00", "01", "08" and "09" (hexadecimal).
- 5: "1" for CG RAM data corresponds to selection for display and "0" for non-selection.

HD44780-

(7) Timing Generation Circuit

The timing generation circuit generates timing signals to operate internal circuits such as DD RAM, CG ROM and CG RAM. RAM read timing needed for display and internal operation timing by MPU access are separately generated so they do not interfere with each other. Therefore, when writing data to the DD RAM, for example, there will be no undersirable influence, such as flickering, in areas other than the display area. This circuit also generates timing signals to operate the externally connected driver LSI HD44100H.

(8) Liquid Crystal Display Driver Circuit

The liquid crystal display driver circuit consists of 16 common signal drivers and 40 segment signal drivers. When character font and number of lines are selected by a program, the required common signal drivers automatically output drive waveforms, the other common signal drivers continue to output non-selection waveforms.

The segment signal driver has essentially the same configuration as the driver LSI HD44100H. Character pattern data is sent serially through a 40-bit shift register and latched when all needed data has arrived. The latched data controls the driver for generating drive waveform outputs.

The serial data is sent to the HD44100H, externally connected in cascade, used for display digit number extension.

Send of serial data always starts at the display data character pattern corresponding to the last address of the display data RAM (DD RAM). Since serial data is latched when the display data character pattern, corresponding to the starting address, enters the internal shift register, the HD44780 drives the head display. The rest displays, corresponding to latter addresses, are added with each additional HD44100H.

(9) Cursor/Blink Control Circuit

This is the circuit that generates the cursor or blink. The cursor or the blink appear in the digit residing at the display data RAM (DD RAM) address set in the address counter (AC).

When the address counter is $(08)_{16}$, a cursor position is:

	AC6	AC5	AC4	AC3	AC2	AC1	AC0							
AC	0	0	0	1	0	0	0							
In a l-lir	ne di	ispla	ay											
(digit)	1	2	3	4	5	6	7	8	9	10	11		÷	Display Position
{	00	01	02	03	04	05	06	07	$\frac{08}{7}$	09	0A		+	DD RAM Address
							t	the c) curso	or po	ositi	on		(Hexadecimal)
In a 2-lir	ne di	lsp1a	ay											
(digit)	1	2	3	4	5	6	7	8	9	10	11		*	Display Position
lst line	00	01	02	03	04	05	06	07	$\frac{08}{I}$	09	0A		÷	DD RAM Address
ہ 2nd line ر	40	41	42	43	44	45	46	47	48	49	4A			(Hexadecimal)
								/	/					

(Note) The cursor or blink appears when the address counter (AC) selects the character generator RAM (CG RAM). But the cursor and blink are meaningless.

The cursor or blink is displayed in the meaningless position when AC is the CG RAM address.

INTERFACING TO MPU

In the HD44780, data can be sent in either 4-bit 2-operation or 8-bit 1-operation so it can interace to both 4 and 8 bit MPU's.

(1) When interface data is 4-bits long, data is transferred using only 4 buses: $DB_4 \sim DB_7$. $DB_0 \sim DB_3$ are not used. Data transfer between the HD44780 and the MPU completes when 4-bit data is transferred twice. Data of the higher order 4 bits (contents of DB₄ \sim DB₇ when interface data is 8 bits long) is transferred first, then the lower order 4 bits (content of DB₀ \sim DB₃ when interface data is 8 bits long) is transferred. Check the busy flag after 4-bit data has been transferred twice (one instruction). A 4-bit 2-operation will then transfer the busy flag and address counter data.

- HD44780

the cursor position

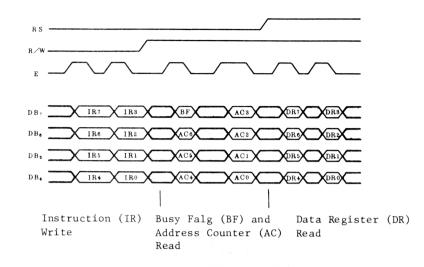


Fig. 4 4-bit Data Transfer Example

(2) When interface data is 8 bits long, data is transferred using the 8 data buses of $\text{DB}_0 \sim \text{DB}_7.$

RESET FUNCTION

Initializing by Internal Reset Circuit

The HD44780 automatically initializes (resets) when power is turned on using the internal reset circuit. The following instructions are executed in initialization. The busy flag (BF) is kept in busy state until initialization ends. (BF=1) The busy state is 10 ms after V_{CC} rises to 4.5V.

(1) Display clear

(2)	Function ser	DL=1 : 8 bit long interface data
		N =0 : 1-line display
		F =0 : 5×7 dot character font
(3)	Display ON/OFF control	D =0 : Display OFF
		C =O : Cursor OFF
		B =0 : Blink OFF
(4)	Entry mode set	<pre>I/D=1: +1 (increment)</pre>
		S =0 : No shift

(Note) When conditions in "Power Supply Conditions Using Internal Reset Circuit" are not met, the internal reset circuit with not operate normally and initialization will not be performed. In this case initialize by MPU according to "Initializing by Instruction".

■ INSTRUCTION

• Outline

Only two HD44780 registers, the Instruction Register (IR) and the Data Register (DR) can be directly controlled by the MPU. Prior to internal operation start, control information is temporarily stored in these registers, to allow interface from HD44780 internal operation to various types of MPUs which operate in different speeds or to allow interface to peripheral control ICs. HD44780 internal operation is determined by signals sent from the MPU. These signals include register selection signals (RS), read/write signals (R/W) and data bus signals (DB₀ ~ DB₇), and are called instructions, here. Table 5 shows the instructions and their execution time. Details are explained in subsequent sections.

Instructions are of 4 types, those that,

- (1) Designate HD44780 functions such as display format, data length, etc.
- (2) Give internal RAM addresses.
- (3) Perform data transfer with internal RAM
- (4) Others

In normal use, category (3) instructions are used most frequently. However, automatic incrementing by +1 (or decrementing by -1) of HD44780 internal RAM addresses after each data write lessens the MPU program load. The display shift is especially able to perform concurrently with display data write, enabling the user to develop systems in minimum time with maximum programing efficiency. For an explanation of the shift function in its relation to display, see Table 7.

When an instruction is executing during internal operation, no instruction other than the busy flag/address read instruction will be executed. Because the busy flag is set to "1" while an instruction is being executed, check to make sure it is on "1" before sending an instruction from the MPU. (Note) Make sure the HD44780 is not in the busy state (BF=0) before sending the instruction from the MPU to the HD44780. If the instruction is sent without checking the busy flag, the time between first and next instructions is much longer than the instruction time. See Table 5 for a list of each instruction execution time.

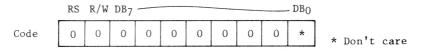
Table 5 Instruction	ns
---------------------	----

T					Ca	ode					Description	Execution time (max)		
Instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB ₂	DB1	DB0	Description	(when fcp or fosc is 250kHz)		
Clear Display	0	0	0	0	0	0	0	0	0	1	Clears entire display and sets DD RAM address 0 in address counter.	1.64ms		
Return Home	0	0	0	0	0	0	0	0	1	*	Sets DD RAM address 0 in adress counter. Also returns display being shifted to original 1.64ms position. DD RAM contents remain unchanged.			
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	S	Sets cursor move direction and specifies shift of display. These operations are performed during data write and read.	40µs		
Display ON/OFF Control	0	0	0	0	0	0	1	D	с	в	Sets ON/OFF of entire display (D), cursor ON/OFF (C), and blink of cursor position character (B).	40µs		
Cursor or Display Shift	0	0	0	0	0	1	s/c	R/L	*	*	Moves cursor and shifts display without changing DD RAM contents.	40 _µ s		
Function Set	0	0	0	0	1	DL	N	F	*	*	Sets interface data length (DL), number of display lines (L) and character font (F).	40 _µ s		
Set CG RAM Address	0	0	0	1	1 ACG					Sets CG RAM address. CG RAM data is sent and received after this setting.	40us			
Set DD RAM Address	0	0	1	ADD							Sets DD RAM address. DD RAM data is sent and received after this setting.	40µs		
Read Busy Flag & Address	0	1	BF				AC				Reads Busy flag (BF) indicating internal operation is being performed and reads address counter contents.	0µs		
Write Data to CG or DD RAM	1	0			W	rite	Dat	a		-	Writes data into DD RAM or CG RAM.	40µs		
Read Data from CG or DD RAM	1	0	0 Read Data							Reads data from DD RAM or CG RAM.	40µs			
	<pre>I/D=1 : Increment I/D=0 : Decrement S =1 : Accompanies display shift. S/C=0 : Cursor move R/L=1 : Shift to the right. R/L=0 : Shifts to the left. DL =1 : 8 bits, DL=0 : 4 bits. N =1 : 2 lines, N=0 : 1 line F =1 : 5×10 dots, F=0 : 5×7 dots BF =1 : Internally operating BF =0 : Can accept instruction</pre>						righ lef :4 b :1 1 0 :5 erat	t. t. its. ine ×7 d ing	ots	•	DD RAM : Display data RAM CG RAM : Character generator RAM A _{CC} : CG RAM address A _{DD} : DD RAM address. Corresponds to cursor address. AC : Address counter used for both DD and CG RAM address.	Execution time changes when frequency changes. (Example) When fcp or fosc is 270kHz: 40µs × $\frac{250}{270}$ = 37µs		

* No Effect

HD44780

Description of Details


(1) Clear Display

С

	RS	R/W	DB7							_ DB()
ode	0	0	0	0	0	0	0	0	0	1	

Writes space code "20" (hexadecimal)(character pattern for character code "20" must be blank pattern) into all DD RAM addresses. Sets DD RAM address 0 in address counter. Returns display to its original status if it was shifted. In other words, the display disappears and the cursor or blink go to the left edge of the dispaly (the first line if 2 lines are displayed). Set I/D = 1 (Increment Mode) of Entry Mode: S of Entry Mode doesn't change.

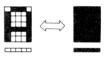
(2) Return Home

Sets the DD RAM address 0 in address counter. Returns display to its original status if it was shifted. DD RAM contents do not change. The cursor or blink go to the left edge of the display (the first line if 2 lines are displayed).

(3) Entry Mode Set

Code

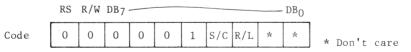
_	RS	R/W	DB7							. DR0
	0	0	0	0	0	0	0	0	I/D	S


- I/D: Increments (I/D=1) or decrements (I/D=0) the DD RAM address by 1 when a character code is written into or read from the DD RAM. The cursor or blink moves to the right when incremented by 1 and to the left when decremented by 1. The same applies to writing and reading of CG RAM.
- S : Shifts the entire display either to the right or to the left when S is 1; to the left when I/D=1 and to the right when I/D=0. Thus it looks as if the cursor stands still and the display moves. The display does not shift when reading from the DD RAM when writing into or reading out from the CG RAM does it shift when S=0.

(4) Display ON/OFF Control

	RS	R/W	DB7							DB6
Code	0	0	0	0	0	0	1	D	С	В

- D : The display is ON when D=1 and OFF when D=0. When off due to D=0, display data remains in the DD RAM. It can be displayed immediately by setting D=1.
- C : The cursor displays when C=1 and does not display when C=0. Even if the cursor disappears, the function of I/D, etc. does not change during display data write. The cursor is displayed using 5 dots in the 8th line when the 5 × 7 dot character font is selected and 5 dots in the 11th line when the 5 × 10 dot character font is selected.
- B : The character indicated by the cursor blinks when B=1. The blink is displayed by switching between all blank dots and display characters at 409.6ms interval when fcp or fosc=250kHz. The cursor and the blink can be set to display simultaneously. (The blink frequency changes according to the reciprocal of fcp or fosc. 409.6 $\times \frac{250}{270} = 379.2$ ms when fcp=270kHz.)



 5×7 dot character 5×10 dot character Alternating display font font

(a) Cursor Display Example (b) 1

(b) Blink Display Example

(5) Cursor or Display Shift

Shifts cursor position or display to the right or left without writing or reading display data. This function is used to correct or search for the display. In a 2-line display, the cursor moves to the 2nd line when it passes the 40th digit of the 1st line. Notice that the 1st and 2nd line displays will shift at the same time. When the displayed data is shifted repeatedly each line only moves horizontally. The 2nd line display does not shift into the 1st line postion. S/C R/L

0	0	Shifts the cursor position to the left. (AC is decremented by one.)
0	1	Shifts the cursor position to the right. (AC is incremented by one.)
1	0	Shifts the entire display to the left. The cursor follows the display shift.
1	1	Shifts the entire display to the right. The cursor follows the display shift.

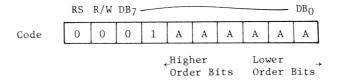
Address counter (AC) contents do not change if the only action performed is shift display.

(6) Function Set

		R/W					-		DB0				
Code	0	0	0	0	1	DL	N	F	*	*	*	(Don't	care)

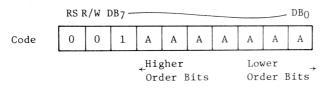
DL : Sets interface data length. Data is sent or received in 8 bit lengths (DB7 \sim DB0) when DL=1 and in 4 bit lengths (DB7 \sim DB4) when DL=0.

When the 4 bit length is selected, data must be sent or received twice.

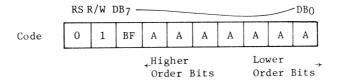

- N : Sets number of display lines.
- F : Sets character font.

(Note) Perform the function at the head of the program before executing all instructions (except "Busy flag/address read"). From this point, the function set instruction cannot be executed unless the interface data length is changed.

NF	No. of display lines	Character font	Duty factor	Remarks
0 0	1	5 ×7 dots	1/8	
0 1	1	5 ×10 dots	1/11	
1 *	2	5 ×7 dots	1/16	Cannot display 2 lines with 5×10 dot character font.

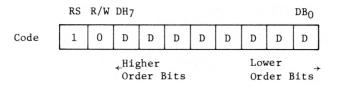

* (Don't care)

(7) Set CG RAM Address


Sets the CG RAM address into the address counter in binary AAAAAA. Data is then written or read from the MPU for the CG RAM.

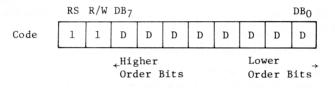
(8) Set DD RAM Address

Sets the DD RAM address into the address counter in binary AAAAAAA.
Data is then written or read from the MPU for the DD RAM.
However, when N=0 (1-line display), AAAAAAA is "00" ~ "4F" (hexadecimal).
 when N=1 (2-line display), AAAAAAA is "00" ~ "27" (hexadecimal)
 for the first line, and "40" ~ "67" (hexadecimal) for the
 second line.


(9) Read Busy Flag and Address

Reads the busy flag (BF) that indicates the system is now internally operating by a previously received instruction. BF=1 indicates that internal operation is in progress. The next instruction will not be accepted until BF is set to "0". Check the BF status before the next wire operation.

At the same time, the value of the address counter expressed in binary AAAAAAA is read out. The address counter is used by both CG and DD RAM addresses, and its value is determined by the previous instruction. Address contents are the same as in Items (7) and (8). HD44780


(10) Write Data to CG or DD RAM

Writes binary 8 bit data DDDDDDDD to the CG or the DD RAM.

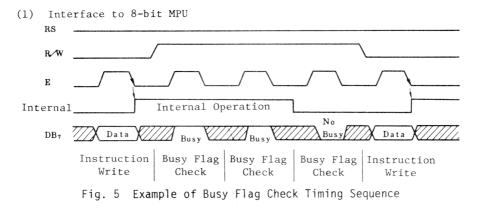
Whether the CG or DD RAM is to be written into is determined by the previous specification of CG RAM or DD RAM address setting. After write, the address is automatically incremented or decremented by 1 according to entry mode. The entry mode also determines display shift.

(11) Read Data from CG or DD RAM

Reads binary 8 bit data DDDDDDDD from the CG or DD RAM.

The previous designation determines whether the CG or DD RAM is to be read. <u>Before entering the read instruction</u>, you must execute either the CG RAM or DD RAM address set instruction. If you don't, the first read data will be invalidated. When serially executing the "read" instruction, the next address data is normally read from the second read. The "address set" instruction need not be executed just before the "read" instruction when shifting the cursor by cursor shift instruction (when reading out DD RAM). The cursor shift in struction operation is the same as that of the DD RAM's address set instruction.

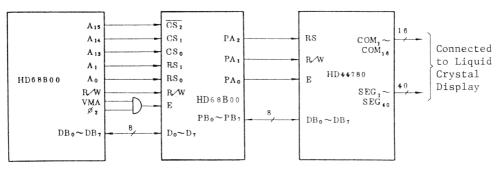
After a read, the entry mode automatically increases or decreases the address by 1. However, display shift is not executed no matter what the entry mode is.


(Note) The address counter (AC) is automatically incremented or decremented by 1 after "write" instructions to either CG RAM or DD RAM. RAM data selected by the AC cannot then be read out even if "read" instructions are executed. The conditions for correct data read out are: execute either the address set

HD44780

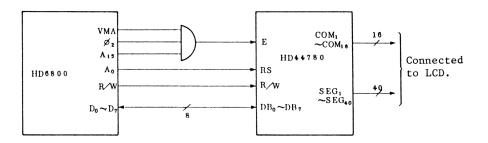
instruction or cursor shift instruction (only with DD RAM), just before reading out execute the "read" instruction from the second time the "read" instruction is serial.

HOW TO USE THE HD44780


• Interface to MPU

(1) When connecting to 8-bit MPU through PIA

Fig. 6-2 is an example of using a PIA or I/O port (for single chip microcomputer) as an interface device. Input and output of the device is TTL compatible.


In the example, PB_0 to PB_7 are connected to the data buses DB_0 to DB_7 and PA_0 to PA_2 are connected to E, R/W and RS respectively. Pay attention to the timing relation between E and other signals when reading or writing data and using PIA as an interface.

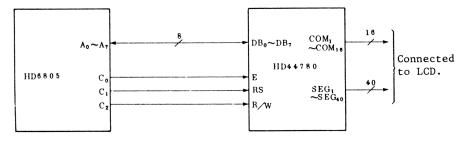
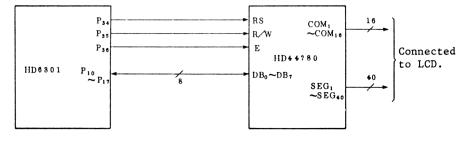

HD68B00: 8 bit CPU

Fig. 6 Example of Interface to HD68B00 Using PIA (HD68B21)


② Connecting directly to the 8-bit MPU bus line

③ Example of interfacing to the HD6805

(4) Example of interfacing to the HD6301

•

(2) Interface to 4-bit MPU

The HD44780 can be connected to a 4-bit MPU through the 4-bit MPU I/O port. If the I/O port has enough bits, data can be transferred in 8-bit lengths, but if the bits are insufficient, the transfer is made in two operations of 4 bits each (with designation of interface data length for 4 bits). In the latter case, the timing sequence becomes somewhat complex. (See Fig. 7)

Fig. 8 shows an example of interface to the HMCS43C.

Note that 2 cycles are needed for the busy flag check as well as the data transfer. 4-bit operation is selected by program.

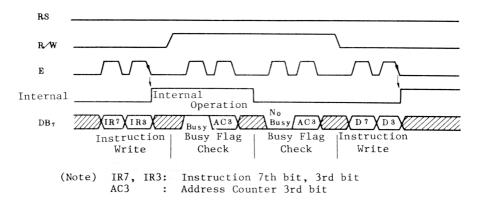
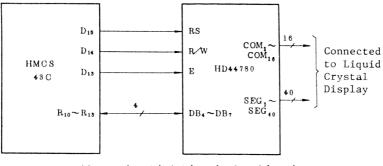



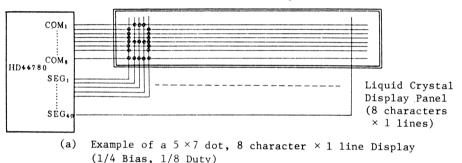
Fig. 7 An Example of 4-bit Data Transfer Timing Sequence

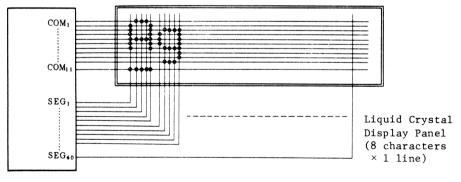
HMCS43C: Hitachi 4-bit single-chip microcomputer Fig. 8 Example of Interface to the HMCS43C

Interface to Liquid Crystal Display

(1) Character Font and Number of Lines

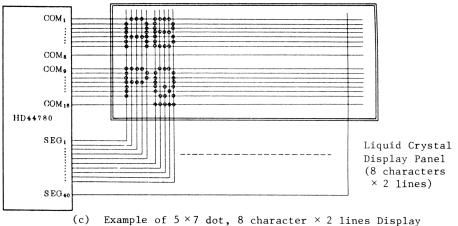
The HD44780 can perform 2 types of display, 5×7 dots and 5×10 dots as character font, with a cursor on each.


Up to 2 lines are displayed with 5×7 dots and 1 line with 5×10 dots. Therefore, three types of common signals are available:


Number of Lines	Character Font	Number of Common Signals	Duty Factor
1	5 × 7 dots + Cursor	8	1/8
1	5 ×10 dots + Cursor	11	1/11
2	5 ×7 dots + Cursor	16	1/16

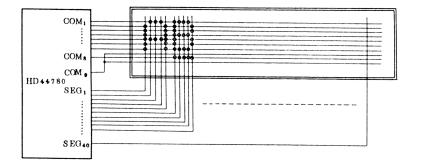
Number of lines and font types can be selected by program. (See to Table 5 Instruction)

(2) Connection to HD44780 and Liquid Crystal Display


Fig. 9 (1) and (2) show connection examples.

(b) Example of a 5 × 10 dot, 8 character × 1 line Display (1/4 Bias, 1/8 Duty)

Fig. 9 (1) Liquid Crystal Display and Connections to HD44780

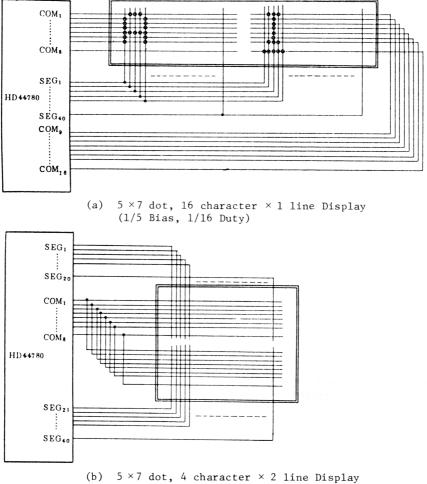


(1/5 Bias, 1/16 Duty)

Fig. 9 (2) Liquid Crystal Display and Connection to HD44780

Since 5 signal lines at the SEG can display one digit, one HD44780 can display up to 8 digits for 1-line display and 16 digits for 2-line display.

In Fig. 9 examples (a) and (b), there are unused common signal terminals, non-selection waveforms which always output. When the liquid crystal display panel has unused extra scanning lines, avoid undesirable influences due to cross-talk in the floating state by connecting the extra scanning lines to these common signal terminals.



 5×7 dot, 8 character $\times 1$ line Display (1/4 Bias, 1/8 Duty)

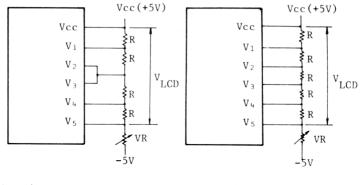
Fig. 10 Using COMg to Avoid Cross-talk on Unneeded Scanning Line

(3) Connection of Changed Matrix Layout

In the preceding examples, the number of lines was matched to the number of scanning lines. The following display types are possible by changing the matrix layout in the liquid crystal display panel.

(1/4 Bias, 1/8 Duty)

Fig. 11 Changed Matrix Layout Displays


In either case, the only change is the layout. Display characteristics and the number of liquid crystal display characters are dependent on the number of common signals (or duty factor). Note that the display data RAM (DD RAM) addresses for 8 characters \times 2 lines and 16 characters \times 1 line are the same as shown in Fig. 9. • Power Supply for Liquid Crystal Display Drive

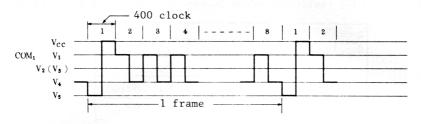
Various voltage levels must be applied to HD44780 terminals V_1 to V_5 to obtain liquid crystal display drive waveforms. The voltages must be changed according to duty factor. Table 6 shows the relation.

Duty Factor		1/16
Power Bias Supply	1/4	1/5
V_1	$V_{cc} - \frac{1}{4} V_{lcd}$	$V_{cc} - \frac{1}{5}V_{lcd}$
V ₂	$V_{cc} - \frac{1}{2} V_{lcd}$	$V_{cc} - \frac{3}{5} V_{lcd}$
V ₃	$V_{cc} - \frac{1}{2} V_{LCD}$	$V_{cc} - \frac{3}{5} V_{lcd}$
V4	$V_{cc} - \frac{3}{4} V_{lcd}$	$V_{cc} - \frac{4}{5} V_{LCD}$
V ₅	$V_{cc} - V_{lcd}$	$V_{cc} - V_{lcd}$

Table 6 Duty Factor and Power Supply for Liquid Crystal Display Drive

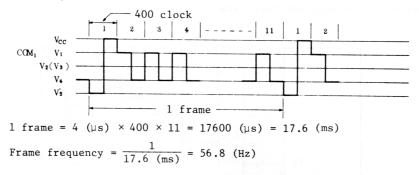
 V_{LCD} gives the peak values for liquid crystal display drive waveforms. Resistance dividing provides each voltage as shown in Fig. 13.

(a) 1/4 Bias (b) 1/5 Bias (1/8, 1/11 Duty) (k/16 Duty)

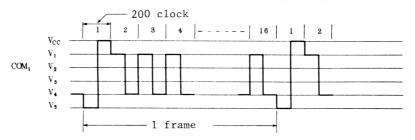

Fig. 13 Drive Voltage Supply Example

HD44780-

 Relation between Oscillation Frequency and Liquid Crystal Display Frame Frequency


The following examples of liquid crystal display frame frequency apply only when oscillation frequency is 250 kHz. (1 clock = 4μ s)

(1) 1/8 Duty



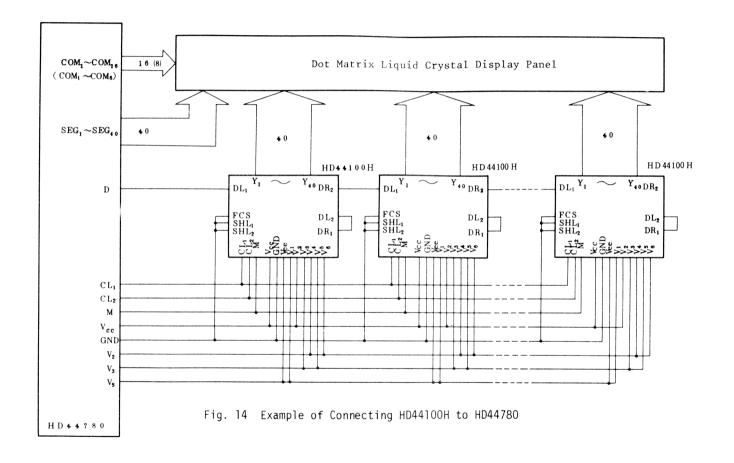
1 frame = 4 (μ s) × 400 × 8 = 12800 (μ s) = 12.8 (ms) Frame frequency = $\frac{1}{12.8 \text{ (ms)}}$ = 78.1 (Hz)

(2) 1/11 Duty

(3) 1/16 Duty

1 frame = 4 (μ s) × 200 × 16 = 12800 (μ s) = 12.8 (ms) Frame frequency = $\frac{1}{12.8 \text{ (ms)}}$ = 78.1 (Hz)

118 HITACHI


• Connection with Driver LSI HD44100H

You can increase the number of display digits by externally connecting a liquid crystal display driver LSI HD44100H to the HD44780.

When connected to the HD44780, the HD44100H is used as segment signal driver. The HD44100H can be connected to the HD44780 directly since it supplies CL_1 , CL_2 , M and D signals and power for liquid crystal display drive. Fig. 14 shows a connection example.

Caution: Connection of voltage supply terminals $\rm V_1$ through $\rm V_6$ for liquid crystal display drive is complicated.

Up to 9 units of the HD44100H can be connected for 1-line display (duty factor 1/8 or 1/11) and up to 4 units for the 2-line display (duty factor 1/16). RAM size limits the HD44780 to a maximum of 80 character display digits. The connection method in Fig. 14 remains unchanged for both 1-line and 2-line display or both 5×7 and 5×10 dot character fonts.

HD44780 --

- Instruction and Display Correspondence
 - (1) 8-bit operation, 8-digit × 1-line display (using internal reset) Table 7 shows an example of 8-bit × 1-line display in 8-bit operation. The HD44780 functions must be set by Function Set prior to display. Since the display data RAM can store data for 80 characters, as explained before, the RAM can be used for displays like the lightening board when combined with display shift operation.

Since the display shift operation changes display position only and DD RAM contents remain unchanged, display data entered first can be output when the return home operation is performed.

- (2) 4-bit operation, 8-digit × 1-line display (using internal reset) The program must set functions prior to 4-bit operation. Table 8 shows an example. When power is turned on, 8-bit operation is automatically selected and the first write is performed as an 8-bit operation. Since nothing is connected to DB₀ ~ DB₃, a rewrite is then required. However, since one operation is completed in two accesses of 4-bit operation, a rewrite is needed as a function (see Table 8). Thus, DB₄ ~ DB₇ of the function set is written twice.
- (3) 8-bit operation, 8-digit \times 2-line display

For 2-line display, the cursor automatically moves from the first to the second line after the 40th digit of the lst line has been written. Thus, if there are only 8 characters in the first line, the DD RAM address must again be set after the 8th character is completed. (See Table 9) Note that the first and second lines of the display shift are performed. In the example, the display shift is performed when the cursor is on the second line. However, if shift operation is performed when the cursor is on the first line, both the first and second lines move together. When you repeat the shift, the display of the second line will not move to the first line, the same display will only move within each line many times.

(Note) When using the internal reset, the conditions in "Power Supply Condition Using Internal Reset Circuit" must be satisfied. If not, the HD44780 must be initialized by instruction. (See "Initializing by Instruction")

HD44780 -

Table 7 8-bit Operation, 8-digit 1-line Display Example(Using Internal Reset)

No.	Instruction	Display	Operation
1	Power supply ON (HD44780 is initialized by the internal reset circuit)		Initialized. No display appears.
2	Function Set RS R/W DB7 DB0 0 0 0 0 1 1 0 0 * *		Sets to 8-bit operation and selects 1-line display lines and character font. (Number of display lines and character fonts cannot be changed hereafter.)
3	Display ON/OFF Control 0 0 0 0 0 0 1 1 1 0		Turns on display and cur- sor. Entire display is in space mode because of initialization.
4	Entry Mode Set 0 0 0 0 0 0 0 1 1 0		Sets mode to increment the address by one and to shift the cursor to the right at the time of write to the DD/CG RAM. Display is not shifted.
5	Write Data to CG RAM/DD RAM 1 0 0 1 0 0 1 0 0 0	H	Write "H". The DD RAM has already been selected by initialization when the power is turned on. The cursor is incremented by one and shifted to the right.
6	Write Data to CG RAM/DD RAM 1 0 0 1 0 0 1 0 0 1	H I	Writes "I".
7			
8	Write Data to CG RAM/DD RAM 1 0 0 1 0 0 1 0 0 1	HITACHI_	Writes "I".
9	Entry Mode Set 0 0 0 0 0 0 0 1 1 1	HITACHI_	Sets mode for display shift at the time of write.
10	Write Data to CG RAM/DD RAM 1 0 0 0 1 0 0 0 0 0	ITACHI	Writes "Space".
11	Write Data to CG RAM/DD RAM 1 0 0 1 0 0 1 1 0 1	TACHI M_	Writes "M".
12			

----- HD44780

13	Write Data to CG RAM/DD RAM 1 0 0 1 0 0 1 1 1 1	MICROKO	Writes "O".
14	Cursor or Display Shift 0 0 0 0 0 1 0 0 * *	MICROKO	Shifts only the cursor position to the left.
15	Cursor or Display Shift 0 0 0 0 0 1 0 0 * *	MICROKO	Shifts only the cursor position to the left.
16	Write Data to CG RAM/DD RAM 1 0 0 1 0 0 0 0 1 1	ICROCO	Writes "C" (correction). The display moves to the left.
17	Cursor or Display Shift 0 0 0 0 0 1 1 1 * *	MICROCO	Shifts the display and cursor position to the right.
18	Cursor or Display Shift 0 0 0 0 0 1 0 1 * *	MICROCO	Shifts display and cursor position to the right.
19	Write Data to CG RAM/DD RAM 1 0 0 1 0 0 1 1 0 1	ICROCOM_	Writes "M".
20			
21	Return Home 0 0 0 0 0 0 0 0 1 0	HITACHI	Returns both display and cursor to the original position (Address 0).

Table 8 4-bit Operation, 8-digit 1-line Display Example (Using Internal Reset)

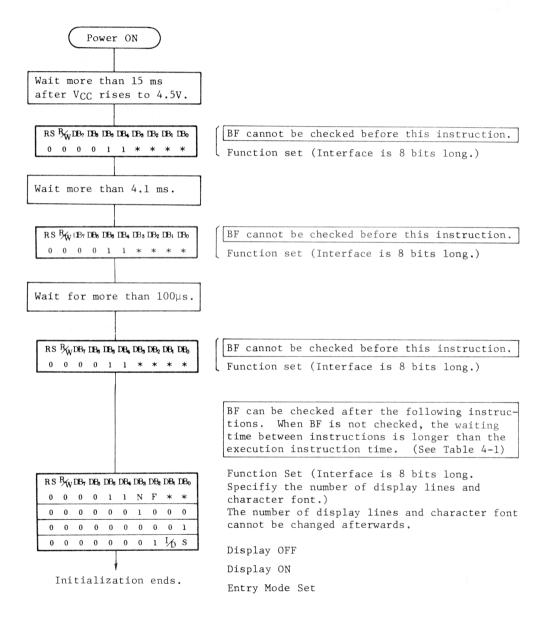
No.	Instruction	Display	Operation
1	Power supply ON (HD44780 is initialized by the internal reset circuit)		Initialized. No display appears.
2	Function Set RS R/W DB7 DB4 0 0 0 0 1 0		Sets to 4-bit operation. In this case, operation is handled as 8 bits by ini- tialization, and only this instruction completes with one write.
3	Function Set 0 0 0 0 1 0 0 0 0 0 * *		Sets 4-bit operation and selects 1-line display and 5×7 dot character font. 4-bit operation starts from this point on and resetting is needed. (Number of display lines and character fonts cannot be changed hereafter.)
4	Display ON/OFF Control 0 0 0 0 0 0 0 0 1 1 1 0		Turns on display and cur- sor. Entire display is in space mode because of ini- tialization.
5	Entry Mode Set 0 0 0 0 0 0 0 0 0 1 1 0		Sets mode to increment the address by one and to shift the cursor to the right, at the time of write, to the DD/CG RAM. Display is not shifted.
6	Write Data to CG RAM/DD RAM 1 0 0 1 0 0 1 0 1 0 0 0	[H]	Writes "H". The cursor is incremented by one and shifts to the right.

Hereafter, control is the same as 8-bit operation.

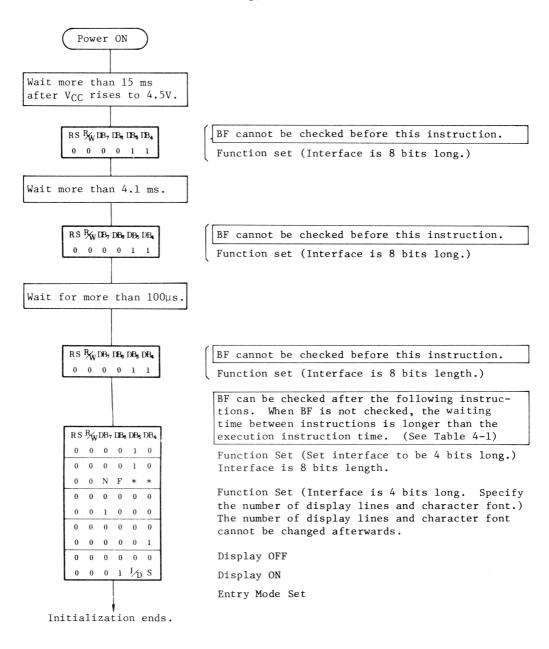
Table 9 8 bit Operation, 8-digit × 2 line Display Example (Using Internal Reset)

No.	Instruction	Display	Operation
1	Power supply ON (HD44780 is intialized by the internal reset circuit)		Initialized. No display appears.
2	Function Set RS R/W DB7 DB ₀ 0 0 0 0 1 1 1 0 * *		Sets to 8-bit operation and selects 2-line display and 5×7 dot character font.
3	Display ON/OFF Control 0 0 0 0 0 0 1 1 1 0		Turns on display and cur- sor. All display is in space mode because of initialization.
4	Entry Mode Set 0 0 0 0 0 0 0 1 1 0		Sets mode to increment the address by one and to shift the cursor to the right, at the time of write, to the DD/CG RAM. Display is not shifted.
5	Write Data to CG RAM/DD RAM 1 0 0 1 0 0 1 0 0 0	Н	Writes "H". The DD RAM has has already been selected by initialization when the power is turned on. The cursor is incremented by one and shifted to the right.
6		• • •	
7	Write Data to CG RAM/DD RAM 1 0 0 1 0 0 1 0 0 1	HITACHI	Writes "I".
8	Set DD RAM Address 0 0 1 1 0 0 0 0 0 0	HITACHI	Sets RAM address so that the cursor is positioned at the head of the 2nd line.
9	Write Data co CG RAM/DD RAM 1 0 0 1 0 0 1 1 0 1	H ITACHI M	Writes "M".
10			
11	Write Data to CG RAM/DD RAM 1 0 0 1 0 0 1 1 1 1	H I T A C H I M I C R O C O	Writes "O".
12	Entry Mode Set 0 0 0 0 0 0 0 1 1 1	H I T A C H I M I C R O C O	Sets mode for display shift at the time of write.

HD44780------


13	Write Data to CG RAM/DD RAM 1 0 0 1 0 0 1 1 0 1	I TA CH I I CROCOM	Writes "M". Display is shifted to the right. The first and second lines' shift are operated at the same time.
14			
15	Return Home 0 0 0 0 0 0 0 0 1 0	H ITACHI M ICROCOM	Returns both display and cursor to the original position (Address 0).

Initializing by Instruction


If the power supply conditions for correctly operating the internal reset circuit are not met, initialization by instruction is required.

Use the following procedure for initialization.

(1) When interface is 8 bits long;

(2) When interface is 4 bits long;

Hitachi America, Ltd. Semiconductor and IC Division 2210 O'Toole Avenue, San Jose, CA 95131 1-408-942-1500

July, 1985

Printed in U.S.A.